Discrete Hardy Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Hardy Spaces

We provide a careful treatment of the weak Hardy spaces Hp,∞(Rn) for all indices 0 < p < ∞. The study of these spaces presents differences from the study of the Hardy-Lorentz spaces H(R) for q <∞, due to the lack of a good dense subspace of them. We obtain several properties of weak Hardy spaces and we discuss a new square function characterization for them, obtained by He [16].

متن کامل

Operator Valued Hardy Spaces

We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...

متن کامل

Hardy spaces for the strip

In this paper we present some new results about the conformally invariant Hardy spaces Hp(S) in the strip S := { z ∈ C | | Imz | < 1 } for 0 < p <∞ . We give an intrinsic characterization of these spaces and we prove that the set of polynomials are dense in all of them.

متن کامل

Removable singularities for Hardy spaces

In this paper we study removable singularities for Hardy spaces of analytic functions on general domains. Two different definitions are given. For compact sets they turn out to be equal and moreover independent of the surrounding domain, as was proved by D. A. Hejhal. For non-compact sets the difference between the definitions is studied. A survey of the present knowledge is given, except for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2014

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-014-9331-8